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An investigation of the stability of Poiseuille flow in a channel with com-
liant galls is conducted on the basis of the method of small oscillations
1 to 4].

Because of the approximate nature of the method of finding solutions of
the Orr-Sommerfeld equation [5], various calculation formulas for the criti-
cal Reynolds number can be obtained depending on the degree of approximation.
Therefore, in the present paper a scheme for calculating the critical Rey-
nolds number for Poiseuille flow between rigid walls is presented, which is
then generalized to the case of elastic boundaries. The formulation of the
boundary conditions for the perturbations on the compliant surface differs
from the corresponding formulations contained in papers[6 and 111].

1. Stability of Poiseuille flow between rigid walls. We shall consider
the stability of Poiseuille flow with respect to perturbations of the ampli-
tude of the stream function, which is an even function in the system of
coordinates with origin on the axis of the channel [3]. The question of the
stability of Poiseuille flow reduces to finding the general solution of Equa-

tion i
(e —e)(f" —af)—w'f = — o (1Y — 203" + aif) (1.1)
for the boundary conditions
FO=F0=70=1)=0 (1.2}

Here (y) is the velocity distribution in Poiseuille flow; f(y) is the
amplitude OF the stream function of the perturbing mction; o 1is the wave
number, determined by the wave length of the perturbed motion;  is the
velocity of propagation of the perturbing motion; and & is the Reynolds
number formed with the half-width of the channel » and the maximum velocity.

All of the quantities which appear in (1.1) and (1.2) are dimensionless.
The maximum velocity in the channel is taken as the velocity scale and the
half-width of the channel as the length scale. For the existence of a non-
trivial solution of Equation (1.1) with boundary conditions (1.2) it is
necessary and sufficient that
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Here f;(i=1,2,3,4) are particular solutions of Equation (1.1) [3].
After estimating the individual terms of Equation (1.3), it can be trans-

formed into ,
1 1s(0) cuo'fy' (1) ( o'l
— 7 RO TR =M B y)

Here u, =u'(0) and ' (y,) = u, = c. The correction term , in the
left-hand side of (1.4) can be taken equal to zero in the first approxima-
tion. Its numerical value for the second approximation is determined from
calculations of the first approximation [5]). In the following we shall
restrict ourselves to the first approximation, i.e. we shall set A = O .
Expressing the left-hand side of (1.4) by means of the Tietjens function [12]
we shall substitute the values of fl’(1¥ and 7,’(1) ; we obtain

-0 (1.3)

(1.4)

‘

1
Fo () = —— =
1=F ) (1.5)

1
=1 ug'c (S (u— c)“dy)—‘S(u —cp dyg(u— ¢)2dy + uo'c (a’ (u—c)? dy)—l + 0(a?)
0 0

[}

CC o™

In the complex equation (1.5) the values of the Tietjens function F(w)
and the Lin function p°(p) do not depend on the velocity distribution y(y).
Extensive tables of these functions are contained in [13]. All of the terms
of order o® and higher are combined in the term 0(g®) in the right-hand
side of (1.5). The argument  is defined by

w = yy (uyaR)"” (1.6)
After determining the expressions for the integrals which appear in (1.5),

taking into account the Poiseuille flow velocity distribution wu = 2y — 2,
we obtain the two real equalities

4clne 1 2¢
u,® a? 835 —4fsc 7

4me
FPw)=— Fow) =% (1.7)
The equalities (1.6) and (1.7) permit the calculations for the neutral
stability curve to be carried out in the following order.

1. We are given a value (< F,°<{0.58. From graph (Fig.1l) ¥(o) = yma/u/?
and with the help of the relation F;°= F,°(w) we find the values
of ¢ and w .

2. From the ¢ which has been found we determine y, and u ’ .

3. For the , which has been obtained we find F,°.

4, Using the first equality of (1.7), we find the parameter o .

5. With the help of (1.6) we determine the corresponding value of p
6. We compute 1

. &* 1 , 1 o ¢
a*=aT=§a, R*=§R (T:)(l—u)dy>
0

In Fig.2 the neutral curve 1 calculated for Poiseuille flow according tc
the scheme outlined above is presented along with the curve 2 obtained by
Lin [ 5). The critical Reynolds number for curve 1 equals Rx¥= 2120 . For
comparison we give the values of the eritical Reynolds number calculated by
Lin R, *= 1970 (first approximation) and Py* = 1780 (second approximation)
and by Meksyn A,%*= 2260 [ 14]. The first approximation of Lin corresonds to
the case A = 0 considered above. The second approximation of Lin takes
the correction term A into account. We shall now turn to the case for
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which the perturbations arising in Poiseuille flow have the amplitude of a
stream function which is an odd function with respect to the axis of the
channel.

The boundary conditions for Equation o
(1.1) in this case are written as [ 3] .
FO=O0O=f)=§f@1)=0 (1.8) 76 /—\‘ ’
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The characteristic equation of the problem corresponding to the conditions
(1.8) has the form

Q) (0 (0 f(0)
O 70 0 /0
Aty (1) ) (1)
h() A K1) 1)

=0 (1.9)

After carrying out transformations of the determinant (1.9), similar to
those made in the case of the even stream function described above, we obtain

1 1 y v
Fo(w)y=1+4 uo'cS(u—c)"dy—|— ug’ca? [S(u—-c)‘zdy S(u-——c)2 dyS(u —c)"2dy —
1.o . 0 y o. 0
—5 (u—c)2dy S(u— e)? dys (4 —cp dyJ +0(a) (1.10)
0 0 0

We shall equate the real and imaginary parts of (1.10), after substituting
the expressions for the integrals; we obtain

F.°(w) = (1.11)
w | 1w 2 w1
=1—a tua et o ’[ T w uy +432(uk’)_32 uy
uy'cuy”
ke (w)——:t—'—k—“ (1.12)

Both of the conditions (1.11) and (1.12) must be satisfied on the neutral
stability curve. The range of variation of w in which the relation (1.12)
can be fulfilled, is defined by the inequality w > 2.3, since F;°(w)> 0.
With the variation of w» in the region ¢ > 2.3 the follovung estlmates are
valid for a Poiseuille profile:
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w0 WU . 7 ¥ ‘
¢ <5 0.246, —uh—,< 1.151, TIUCQUJOJ, ——(l.195>—3-6 -Tk,—>~—0.224
25 (u\? o NENLA
oy (“_h) <0.0766,  —0.0313 > o5 (—;;k-) >0.0473,  F,°(w)> 0.9

Thus, from (1.11) it is seen that ¢« > 0 when the equality (1.12) is
fulfilled. This is indicative of the stability of laminar Polseuille flow
to all small perturbations of the form  f(y) exp [ix (z — ct)], where f(y)is
an odd function with respect to the axis of the channel.

The result obtained can be illustrated by the following reasons. In the
case of y(y) even with respect to the axis of the channel, the velocity of
the perturbghg motion w,{y) will be an odd function and, consequently, it
will always satisfy the equality

S v (y)dy =0 - (1.13)
4]

which expresses the continuity condition since at a given instant exactly the
same quantity of fluid flows through each section of the channel. In the
case of f( odd with respect to the axis of the channel, the velocity
component og the perturbing motion v, will be an even function and, conse~-
quently, the integral on the left-hand side of (1.13) need not be equal to
zero., In view of the continuity equation this circumstance indicates that
the existence of such perturbations is impossible., Without even resorting
to detailed analysis, similar arguments permit the conclusion that not all
perturbations of stream functions which are odd with respect to the axis of
the channel can exigt in Poiseuille flow.

2. DBoundary conditions for the Orr-Sommerfeld equation in the case of an
elastic surface. The problem of the stability of the laminar form of flow
near an elastic surface differs in the boundary conditions at y = O from
the analogous problem ior a rigid wall.

If in the case of a rigid surface the velocity components of the perturb-
ing motion are equal to zero at the wall, it is then in the case of an elas-
tic surface natural to assume that, by virtue of satisfying the no-slip con-
dition, they are equal to the corresponding velocity components of the points
on the surface of the wall.

The deformation of the elastic surface is, in turn, related to the tan-
gential and normal stresses on the surface of the body which are caused by
the pulsations of the velocity of the perturbing motion in the flow.

We shall consider only small deformations of the wall so that their influ-
ence on the basic velocity profile can be neglected.

We are given the following coupling relations between the stresses and
the deformations of the surface:

y1= kypret™ Zy = myryett (1: = —(?-z-)—{) 2.4

’ 1 == My Ty r-uaml (2.1)

Here x, and m, are constant quantities which depend on the properties

of the coating, p, is the varying pressure component on the surface of the

body, T, is the varying tangential stress component on the surface of the

body, and ¢, and 6, are the phase shifts between the oscillations of the
stresses on the surface of the body and the corresponding deformations.

?he pressure pulsations on the wall can be determined from the linearized
Navier-Stokes equations for the perturbing motion [71.

Differentiating the equalities (2.1) with respect to time and expressing
the varying quantities which appear in them by means of the stream function
of the perturbing motion, we obtain the following boundary conditions on the
elastic surface:

a) wall compliant only in normal direction
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ke .
— e IO+ 1(0) e — keuy') = 0, F(0)y=0 (2.2)
b) wall compliant only in tangential direction
mic .
f () =0, POy +i = 17 (0) e =0 (2.3)
In equalities (2.2) and (2.3) the dimensionless quantities
., pU® pU?
k= kl‘_h y m=m; T

play the role of similarity criteria which characterize the properties of
the coating. For exactly the same mechanical characteristics of coating the
effectiveness of its performance depends on the density of the fluid flowing
in the channel, the surface of the maximum velocity and the width of the
channel,

The boundary conditions on the wall thus obtained are a consequence of
the assumed relation between the deformations of the surface and the corre-
sponding stresses (2.1) which, in spite of its simplicity, is very general.
Thus, for exemple, the first relation of (2.1) includes all coatings whose
deformation is described by an equation of the type

( dy oy y Yy "y
Liy, 573 "y

I e R Gk

where I is a linear combination of its arguments with constant coefficients,
p 1is the pressure of the perturbing motion on the surface of the wall, and

y is the coordinate of the surface of the elastic coating. It is assumed,

as is usual in the mothod of small oscillations, that all quentities associ-
ated with the perturbing motion vary in accordance with the harmonic law

A (z,y, ) = [Ar () + id; ()] exp [ic (z — ct)]

3. 8tadility of Poiseuille flow on & surface compliant in the normal
ireotion. Using the boundary conditions (2.2), the following characteristic
equation can be obtained:

___1_ .{3(0) uO’kC . Cl‘ofs’(i) (3 1)
yp o0} e peuy T wlefS (D)1 (1) ’
It is a generalization of relation (1.4) to the case of an elastic wall.
In the derivation of (3.1) only terms higher with respect to the quantity

aR , which is assumed to be sufficiently large, were taken into account. On
the basis of (3.1) we find the two real equations

N, =G, (w, ke, 81, uy), N, =G, (», ke, 8, uy) (3.2)

relating the characteristics of the perturbing motion a and ¢ , the Rey-
nolds number & , the velocity profile data and the parameters of the elas-
tic coating x and 8,.

The functions which appear in {(3.2) have the following expressions:

4clinc 1 2¢ MA4nc
Ne=— Tt et e =
a—F,_ (w) F;(w)— B
G = 5 3 s Gi= A_F 3 B— F.)2 (3.3)
r=A=F T (B—Fy A—FF T (B—F)
{ ~ kcuy’ cos 31 kcuo' sin 61

B = (3.9)

A= 1— 2&6&0’ cos 6; -+ k2ctug'® i— 2kcuo' cos 61 -4~ k2clug'?

Using the system of equations (3.2), the following order of calculating
the c¢ritical Reynolds number for Poiseuille flow between elastic walls can



Stability of plane Polseullle flow 1323

be proposed.

1. Having the numerical values of the parameters x¢ and §, and know~
ing the quantity u,”= 2 (for Poiseuille flow), we compute 4 and &
from Formulas (3.4).

2. Using the known relations g, {p) and p () [13 and 151, we construct
with the help of Formula (3.3) a graph of the function ¢, (w) for the 4
and p which have been found.

3. From the graph of ¢ = a,(w) we determine g, < 8nd the correspond-
‘ing value of wp,. .

4, After graphically solving the second equation of (3.2) for 4o , we
determine the quantity ¢, and, consequently, the corresponding values of
Yy and Uy . - .

5. PFrom Formula (3.3) we determine &,, for the value w ™ w, .
6. Using the first equality of (3.2), we compute the parameter a .

7. With the help of the relation (1.6), we determine the critical Rey~
nolds number.

8. We find the value of the parameter 'k = kc/¢,, which corresponds to
this Reynolds number.

a* Performing the indicated
calculations for different
values of the product ko with

a6 N\ pe=a constant 6, , the relation

\ =
\ R.* = R,* (k, 6, = const)
23 ShN

k0291 NN can be obtained.

kwdwx\\\ On Fig.3 curves of neutral
stability for a Poiseuille pro-

file are presented which were

constructed for the case

8= 60" according to the scheme

advanced above,

The calculations indicate
that the compliance of the
surface in the normal direction
J 4 5 £ 7 g g can both inctrease the stability

of the lamirar form of flow
Fig. 3 (6, =60 — 90°), and decrease it
8, = 150 — 180%),

4, B8tability of Poiseuille flow on & surfsce sompliant in the tangential
plane., Using the homogeneous boundary conditions on tne wall (2.3) and the
conditions on the axis of the channel from {1.2), the following character-

istic equation can be obtained taking into account only terms higher with
respect to the quantity q& :

{1 — F () [1 — moderyw™" exp (i (8: +}/an)]} ! = N, 4 iV, (4.1)

The quantities N, N, F(w) are defined by expressions analogous to those
in the equalities (3.2).

The complex equation (4.1) can be replaced by the two real equations

22 AN

X

ar

_ D, (w, M, 6;) Dy (w, M, 6.
o= @=N (0= Tpaet o= - )
Here

Dr (w, M, 6;) = 1 — F. () + Fy (w) Mw™"" cos (8 + Yant) — Fy (w) Mw™" sin (8, -+ V)
Dy (w, M, 65) = — Fy () + Fy () Mw™" cos (8 + Y/am) -+ Fr (10) Mw™"sin (6, 4 Y1)
M = matcly,
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Using (4.2) and adhering to the scheme proposed in Section 3, it is not
difficult to calculate the critical Reynolds number and the corresponding
value of the parameter m .

T4 e The results of the calculations of the
e critical Reynolds number of Poiseuille

L flow between the flexible walls compliant

- in the tangential plane are presented in

A Pig.4. The calculations were made for

2600 L ) 3
f”,w”‘ Comparison of the stability character-
istics of Poiseuille flow between flexible
walls compliant in the normal direction
1o m and flexible walls compliant in the tan-
“Ya 7 % 2 gential direction for optimum phase shifts
6, and 85 , leads to the following con-
Fig. 4 clusion. The capacity of the wall to
* deform in a direction normal to the surface
under the action of normal pressure pulsa-
tions infuences the stability of the lami-
nar form of flow in significantly greater degree than the corresonding capa-
city of the wall to deform in the tangential plane, The explanation for this
circumstance lies in the fact that the influence of the compliance of the
surface in the tangential plane on the stability of the laminar form of flow
is inversely proportional to the Reynolds number, which follows from the
second boundary condition of (2.3).
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