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An investigation of the stability of Poiseuille flow in a channel with com- 

P 
liant walls is conducted on the basis of the method of small oscillations 
1 to 41. 

Because of the approximate nature of the method of finding solutions of 
the Orr-Sommerfeld equation [5], various calculation formulas for the criti- 
cal Reynolds number can be obtained depending on the degree of approximation. 
Therefore, in the present paper a scheme for calculating the critical Rey- 
nolds number for Poiseuille flow between rigid walls is presented, which is 
then generalized to the case of elastic boundaries. The formulation of the 
boundary conditions for the perturbations on the compliant surface differs 
from the corresponding formulations contained in papersE6 and 111. 

1. Stability of Polrrulllr flow botwrrn rigid W8llr, We shall consider 
the stability of Poiseuille flow with respect to perturbations of the ampli- 
tude of the stream function, which is an even function in the system of 
coordinates with origin on the axis of the channel [3]. The question of the 
stability of Poiseuille flow reduces to finding the general solution of Equa- 
tion 

for the boundary conditions 

f (0) = f' (0) = f' (I) = f'" (1) = 0 (I.3 

Here u( 
amplitude o P 

) is the velocity distribution in Poiseuille flow; 
the stream function of the perturbing motion; n 

&Leiza;;e 

number, determined by the wave length of the perturbed motion; is the 
velocity of propagation of the perturbing motion; and R is thg Reynolds 
number formed with the half-width of the channel h and the maximum velocity. 

All of the quantities which appear in (1.1) and (1.2) are dimensionless. 
The maximum velocity in the channel is taken as the velocity scale and the 
half-width of the channel as the length scale. For the existence of a non- 
trivial solution of Equation (1.1) with boundary conditions (1.2) it is 
necessary and sufficient that 
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51(O) ia (0) f3(W i4 C’) 
ii'(O) 12'(O) f.l' ("1 Ir' 0,) 

h'(l) ir'(l) h'(1) it'(l) 
x0 (I.31 

/l"'(i) 12"'(l) J3,0(i) ir"'(l) 

Here fi(i= 1,2,3,4) are particular solutions of Equation (1.1) [3]. 
After estimating the individual terms of Equation (l.j), it can be trans- 
formed into 

Here ' = u' (0) 
left-hand?ide of 

and 
(1.4) 

u'(y+.) = Uk = c. The correction term h in the 
can be taken equal to zero in the first approxima- 

tion. Its numerical value for the second approximation is determined from 
calculations of the first approximation 153. In the following we shall 
restrict ourselves to the first approximation, i.e. we shall set @.i- 0. 
Expressing the left-hand side of means of the Tietjens function [12] 
we shall substitute the values of f, and y,'(l) ; we obtain 

F”(w)= i_;(w) = 
(1.5) 

1 I 

=1+u@‘c (u-cydy 
cs 

-I 

1s (U-CYd,S( 

1 

( s 

--I 
u - c)-~ dy + uo’c a* (u - c)B dy + 0 (a’) 

0 0 0 0 

In the complex equation(l.5)the values of the Tietjens function F(w) 
and the Lin function F*(U) do -not depend on the velocity distribution u(P). 
Extensive ttbles of these functions are contained in 11 1. All of the terms 
of order 
side of (1:5). 

and higher are combined in the term 0(a2 in the right-hand 
The argument w is defined by 

w = yk ( uk’aR)‘ja (1.6) 

After determining the expressions for the integrals which appear in (1.51, 
taking into account the Poiseuille flow velocity distribution 
we obtain the two real equalities 

u = 2y - IJ?, 

Fro (W) = - F + $ s,,, _:ysc + c3 ) 

Fio (w) = $ (1.7) 

The equalities (1.6) and (1.7) permit the calculations for the neutral 
stability curve to be carried out in the following order. 

1. We are given a value 06 Fio< 0.58. From graph (Fig.11 M(c) = Ic~*/u~" 
and with the help of the relation Fi" = Fi”(w) we find the values 
of c and UI . 

2. From the o which has been found we determine I/~ and IC~I . 
3. For the o which has been obtained we find P,O. 

4. Using the first equality of (1.7), we find the parameter c . 

5. With the help of (1.6) we determine the corresponding value of p . 
6. We compute 

6* 1 
a*=a-_=-_a j&R ($ ;* 

h 3' 
=:J(l-")"") 

the 
In Fig.2 the neutral curve 1 calculated for Poiseuille flow according tc 
scheme outlined above is presented along with the curve 2 obtained by 

Lin C 51. The critical Reynolds number for curve 1 equals I)**= 2120 . For 
comparison we give the values of the critical Reynolds number calculated by 
Lin R+*= 1970 (first approximation) and p+* -1780 (second approximation) 
and by Meksyn J)+*= 2260 [ 141. 
the case A 

The first approximation of Lin corresonds to 
= 0 considered above. 

the correction term A 
The second approximation of Lin takes 

into account. We shall now turn to the case for 
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which the perturbations arising in Poiseuille flow have the amplitude of a 
stream function which is an odd function with respect to the axis of the 
channel. 

The boundary conditions for Equation 
(1.1) in this case are written as [3] . 

f (0) = f’ (0) = f (1) = f" (1) = 0 (1.3) 

4 

ff a2 04 06 

Fig. 1 Fig. 2 

The characteristic equation of the problem corresponding to the conditions 
(1.8) has the form 

fl(O) fr (0) fs (0) f4W 

fi(O) fs'W fs'W fa'W 

fl(O fr(l) fs (1) fP(U =O 

fl' (0 fr” (1) fs” (1) 14" (1) 

(f-9) 

After carrying out transformations of the determinant (1.9), similar to 
those made in the case of the even stream function described above, we obtain 

F”(w)=l+u/c~(u-c)-ady+uo’caa [5(+cPdy S( 

V 

u - c)” dy 
s 

(u - c)-2 dy - 
0 0 0 0 

1 1 Y 

-‘( I u - c)-a dy e (u - c)+ dy s (u - c)~ dy] + 0 (a”) I 
0 0 0 

(1.10) 

We shall equate the real and imaginary parts of (l.lO), after substituting 
the expressions for the integrals; we obtain 

(1.11) 

-$+ 

Both of the conditions (1.11) and (1.12) must be satisfied on the neutral 
stability curve. The range of variation of w in which the relation (1.12) 
can be fulfilled, is defined by the inequality w > 2.3, since F, O(w)> 0. 
With the variation of IO in the region wa2.3 the following estimates are 
valid for a Poiseuille profile: 
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U”‘C uh.” 

Thus, from (1.11) it is seen that aa > D when the equality (1.12) is 
fulfilled. This is indicative of the stabil.ity of laminar Poiaeuille flow 
to all small perturbations of the form f (~1 exp Ii% (5 - 41, where f(y) is 
an odd function with respect to the axis of the channel. 

The result obtained can be illustrated by the following reasons. In the 
case of y( ) even with re% ect to the axis of the channel, the velocity of 
the perturb ng motion Y u,(u P will be an odd function and, consequently, it 
will always aatiqfy the equality 

a 

(1.13) 

which expresses the continuity condition since at a given instant exactly the 
same quantit In the 
case of y( 

rtj 

of fluid flows through each section of the channel. 
odd with respect to the axis of the channel, the velocity 

component o the perturbing motion u, will be an even function and, conae- 
quently, the integral on the left-hand side of (1.13) need not be equal to 
zero. In view of the continuity equation this circumstance indicates that 
the existence of such perturbations is impossible. Without even resorting 
to detailed analysis, similar arguments permit the conclusion that not all 
perturbation% of stream function% which are odd with respect to the axis of 
the channel can exist in Poiseuille flow. 

0. w 0onditioM for the o&v-bfeld rQaation in wu ome of an 
rZa8tlo mzrfaw. The problem of the stability of the laminar form of flow 
near an elastic surfac differ% in the boundary conditions at I/ = 0 from 
the analogous problem $ or a rigid wall. 

If in the case of a rigid surface the velocity component% of the perturb* 
ing motion are equal to %ero at the wall, it is then in the case of an elas- 
tic surface natural to assume that, by virtue of satisfying the no-slip con- 
dition, they are equal to the corresponding velocity components of the points 
on the surface of the wall, 

The defamation of the elastic surface is, in turn, related to the tan- 
gential and normal stresses on the surface of the body which are caused by 
the pulsations of the velocity of the perturbing motion in the flow. 

We shall consider only small deformations of the wall so that their influ- 
ence on the basic velocity profile can be neglected. 

We are given the following coupling relations between the stresses and 
the deformation% of the surface: 

Here kl and ml are constant quantities which depend on the properties 
of the coating, 
body, 

p1 is the varying pressure component on the surface of the 
71 is the varying tangential stress component on the surface of the 

body, and gr and 0s are the phase shifts between the oscillation% of the 
stresses on the surface of the body and the corresponding deformations. 

The pressure pulsations on the wall can be determined from the linearized 
NavLer-Stokes equations for the perturbing motion 171. 

Differentiating the equalities (2.1) with respect to time and expressing 
the varying quantities which appear in them by means of the stream function 
of the perturbing motion, we obtain the following boundary conditions on the 
elastic surface: 

a) wall compliant only in normal direction 
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- $ji j”‘(‘l) + f (0) [Ceio’ - /iCUo’] IO, f’ (0) = 0 (2.2) 

b) wall compliant only in tangential direction 

f (0) = 0, i0, ~,{O)~~~~~~~~(~)~ -0 

In equalities (2.2) and (2.3) the dimensionless quantities 

(3.3) 

pir" 
kklh' ,=,,y 

Play the role of similarity criteria which characteriee the properties of 
the coating. For exactly the same mechanical characteristics of coating the 
effectiveness of its performance depends on the density of the fluid Slowing 
in the channel, the surface of the maxisxnn velocity and the width of the 
channel. 

The boundary conditions on the wall thus obtained are a consequence of 
the assumed relation between the defommtions of the surface and the corre- 
sponding stresses (2.1) which, in spite of its simplicity, is very general. 
'Hue, for example, the first relation of (2.1) includes all coatings whose 
deformation is described by an equation of the type 

L Y, 
( 

8Y aY a"Y - @Y 3 
at, ax* Fv -&3-*...r .&” =P(x*t) 

1 
where L is a linear combfnatlon of its arguments with constant coefficients, 
p is the pressure of the perturbing motion on the surface of the wall, and 
Y is the coordinate of the surface of the elastic coating. It is assumed, 
as is usual in the method OS small oscillations, that all quantities associ- 
ated with the perturbing motion vary in accordance rith the harmonic law 

A (2, Yv t) = MT (Y) + Ui (k)l ew Iia (2 - 41 

3. atability of Polroulllo flow on 8 rrpfma &lluuL ta eh@ aora8l 
d%FOO~iOlL Using the boundary conditions (2.2). the following characteristic 
equation can be obtained: 

(3.1) 

It is a generalization of relation (1.4) to the case of an elastic wall. 
In the derivation of (3.1) only terms higher with respect to the quantity 
arl , which is assumed to be sufficiently large, were taken into account. On 
the basis of (3.1) we find the two real equations 

N, = G,(w kc, 81, ~a'), Ni = G,(w, kc, 01, UO’) (3.2) 

relating the characteristics of the perturbing motion a and c , the Rey- 
nolds number R , the velocity profile data and the parameters of the elas- 
tic coating is and 8%. 

The functions which appear in (3.2) have the following expressions: 

4c lnc 1 2c 
N,=-- uIr's + -F 8/1.5-Qc -t c2 ’ N(=$$ 

“--F,(f4 F, (w) - B 

%= (A-F,)*+(B-F$ ’ Gi = (A - F,)2 + (3 - F*)2 (3.3J 

A= i - 2keuO’ eos @I+ k2Eud2 ’ B== I- Zkcu; cos 0X + k2cZud2 (3.4) 
1- keuo’ cos e1 

Using the system of equations (3.21, the following order of calculating 
the critical Reynolds number for Poiseuille flow between elastic walls can 
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be proposed. 

Having the numerical values of the parameters ka and 9, and know- 
inglihe quantity 
from Formulas (3.4tj'l 

l = 2 (for Poiseuille flow), we compute A and B 

2. Using the known relations p',(w) and r (to) cl3 and 1 
with the help of Formula (3.3) a graph of the #unction 

3, we construct 
for the A 

and B which have been found. 

3. Prom the graph of G,- G, 10 
4ng value of wmax. 

( )we determine G, i and the correspond- 

4. After graphically solving the second equation of (3.2) Por 0 , we 
determine the quantity c, and, consequently, the corresponding values of 
y, and I+. . 

5. From Formula (3.3) we determine 0,. for the value w - ro. . 

6. Using the first equality of (3.21, we compute the parameter a . 

7. With the help of the relation (1.61, we determine the critical Rey- 
nolds number. 

8. We find the value of the parameter ‘k= kc/C, which corresponds to 
this Reynolds number. 

Performing the indicated 
calculations ior different 
values of the product kc with 
constant 81 , the relation 

R,* = R,+ (k, 8, = const) 

can be obtained. 

On Fig.3 curves of neutral 
stability for a Poiseuille pro- 
file are presented which were 
constructed for the case 
@I= 60" according to the Scheme 
advanced above. 

The calculations indicate 
that the compliance of the 
surface in the normal direction 

5 6 7 8 9 can both inctrease the stability 
of the laminar form of flow 

Fig. 3 @I ~60 -9O"), and decrease it 
(6,=:150 - 1800). 

4. 8tablllty of Poirotillr flaw on 1 rurfma oont#lar& In the tuyeatfal 
plum, Using the homogeneous boundary conditions on t&e wall (2.3) and the 
conditions on the axis of the channel from (1.2), the following character- 
istic equation can be obtained taking into account only terms higher with 
respect to the quantity CJ, : 

(1 - F (w) [1- muWyktuJ~aexp (i (0, +;~/~Tc))]}-~ = N, + iNi (4.1) 

The quantities Nr,Ni, F(w) 
in the equalities (3.2). 

are &fined by expressions analogous to those 

The complex equation (4.1) can be replaced by the two real equations 

tD ,,= N,, tD6=NN( 
i 

@ _ q” (% M, $2) & (w, M, ez) 
r- &a+&2 ’ @i=- Br2+Di2 1 (4.2) 

Here 

Dr (~9 M, '32) = i - Fr (w) + Fr (w) Mw-"' cos (02 + ‘/‘a~) - F* (w) MID-‘/* sin (0, + l/,n) 

Di(w. M, 6,) = - Fi (4 + Fi (4 Mw-“* ~0s (8s + V~sc) + Fr (w) Mw-‘1s sin (e, + ‘/,,c) 

M = muWyk 
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Using (4.2) and adhering to the scheme proposed in Section 3. it is not 
difficult to calculate the critical Reynolds number and the corresponding 
value of the parameter m . 

The results of the calculations of the 
critical Reynolds number of Poiseuille 
flow between the flexible wall8 Compliant 
in the tangential plane are presented ir 
Fig.4. The calculations were made for 

Fig. 4 deform in a direction-normal to the surface 
under the action of normal pressure pulsa- 
tions infuences the stability of the lami- 
greater degree than the corresonding capa- 
tangential plane. The explanation for this 

nar form of flow in significantly 
city of the wall to deform in the . _ 
cZrcum8tance lies In the fact that the influence of the compliance of the 
surface in the tangential plane on the stability of the laminar form of flow 
is inversely proportional to the Reynblda number, which follows from the 
second boundary condition of (2.3). 

Comparison of the stability character- 
istics of Poiseuille flow between flexible 
walls compliant in the normal direction 
and flexible walls compliant in the tan- 
gential direction for ontimum DhaSe shifts 

leads to the follbuingcon- 
The capacity of the wall to 
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